Performance Optimization

This guide covers performance benchmarks, optimization strategies, and best practices for running deepwikiopen efficiently at scale.

Performance Benchmarks

Baseline Performance Metrics

Repository SizeInitial Index TimeQuery Response TimeMemory UsageCPU Usage
Small (<1GB)5-10 minutes<100ms2-4GB20-40%
Medium (1-10GB)20-60 minutes100-300ms4-8GB40-60%
Large (10-50GB)1-4 hours300-500ms8-16GB60-80%
XLarge (>50GB)4-12 hours500-1000ms16-32GB80-100%

Query Performance Benchmarks

# Average query response times by complexity
simple_keyword_search: 50-100ms
semantic_search: 100-300ms
code_understanding: 200-500ms
multi_file_analysis: 500-2000ms
repository_wide_search: 1000-5000ms

Throughput Benchmarks

# Requests per second (RPS) by hardware configuration
minimal_setup:
  cpu: 2 cores
  ram: 4GB
  rps: 10-20

recommended_setup:
  cpu: 4 cores
  ram: 8GB
  rps: 50-100

production_setup:
  cpu: 8 cores
  ram: 16GB
  rps: 200-500

high_performance:
  cpu: 16 cores
  ram: 32GB
  rps: 1000+

Resource Requirements by Repository Size

Minimum Requirements

small_repositories:
  cpu: 2 cores
  memory: 4GB
  storage: 10GB
  network: 100Mbps

medium_repositories:
  cpu: 4 cores
  memory: 8GB
  storage: 50GB
  network: 1Gbps

large_repositories:
  cpu: 8 cores
  memory: 16GB
  storage: 200GB
  network: 1Gbps

enterprise_scale:
  cpu: 16+ cores
  memory: 32GB+
  storage: 1TB+
  network: 10Gbps
development:
  cpu: 4 cores
  memory: 8GB
  storage: 100GB SSD
  gpu: Optional (NVIDIA GTX 1060+)

production:
  cpu: 8-16 cores
  memory: 16-32GB
  storage: 500GB NVMe SSD
  gpu: Recommended (NVIDIA RTX 3060+)

high_performance:
  cpu: 32+ cores
  memory: 64GB+
  storage: 2TB NVMe RAID
  gpu: Required (NVIDIA A100/H100)

Caching Strategies and Configuration

Multi-Level Caching Architecture

# config/cache.py
CACHE_CONFIG = {
    "embedding_cache": {
        "type": "redis",
        "ttl": 86400,  # 24 hours
        "max_size": "10GB",
        "eviction": "lru"
    },
    "query_cache": {
        "type": "memory",
        "ttl": 3600,  # 1 hour
        "max_size": "2GB",
        "eviction": "lfu"
    },
    "file_cache": {
        "type": "disk",
        "ttl": 604800,  # 7 days
        "max_size": "50GB",
        "path": "/var/cache/deepwikiopen"
    }
}

Redis Configuration

# redis.conf optimizations
maxmemory 8gb
maxmemory-policy allkeys-lru
save ""  # Disable persistence for cache
tcp-keepalive 60
tcp-backlog 511
databases 16

# Performance tuning
hz 100
dynamic-hz yes
rdb-compression yes
rdb-checksum no

Application-Level Caching

# Implement intelligent caching
from functools import lru_cache
from typing import Dict, List
import hashlib

class PerformanceCache:
    def __init__(self):
        self.embedding_cache = {}
        self.query_cache = {}
        
    @lru_cache(maxsize=10000)
    def get_cached_embedding(self, content_hash: str):
        """Cache embeddings by content hash"""
        return self.embedding_cache.get(content_hash)
    
    def cache_query_result(self, query: str, results: List[Dict]):
        """Cache query results with TTL"""
        query_hash = hashlib.md5(query.encode()).hexdigest()
        self.query_cache[query_hash] = {
            "results": results,
            "timestamp": time.time(),
            "ttl": 3600
        }

Database Optimization

PostgreSQL Configuration

-- postgresql.conf optimizations
shared_buffers = 25% of RAM
effective_cache_size = 75% of RAM
work_mem = 256MB
maintenance_work_mem = 1GB
wal_buffers = 16MB
checkpoint_completion_target = 0.9
random_page_cost = 1.1  -- For SSD

-- Connection pooling
max_connections = 200
shared_preload_libraries = 'pg_stat_statements'

Index Optimization

-- Create optimized indexes
CREATE INDEX idx_embeddings_vector ON embeddings USING ivfflat (vector vector_l2_ops)
WITH (lists = 1000);

CREATE INDEX idx_code_files_path ON code_files USING btree (file_path);
CREATE INDEX idx_code_files_language ON code_files USING btree (language);
CREATE INDEX idx_code_files_updated ON code_files USING btree (last_updated DESC);

-- Partial indexes for common queries
CREATE INDEX idx_active_repositories ON repositories (id) 
WHERE is_active = true;

-- Composite indexes
CREATE INDEX idx_search_composite ON code_files (repository_id, language, file_path);

Query Optimization

-- Use prepared statements
PREPARE search_embeddings AS
SELECT file_id, similarity
FROM embeddings
ORDER BY vector <-> $1
LIMIT $2;

-- Batch operations
INSERT INTO embeddings (file_id, vector, metadata)
VALUES ($1, $2, $3)
ON CONFLICT (file_id) 
DO UPDATE SET vector = EXCLUDED.vector, updated_at = NOW();

Model Selection for Performance

Model Performance Comparison

Model TypeSpeedAccuracyMemoryUse Case
TinyBERT⚡⚡⚡⚡⚡⭐⭐⭐500MBReal-time search
DistilBERT⚡⚡⚡⚡⭐⭐⭐⭐1GBBalanced performance
BERT-base⚡⚡⚡⭐⭐⭐⭐2GBStandard search
CodeBERT⚡⚡⭐⭐⭐⭐⭐4GBCode understanding
GPT-2⭐⭐⭐⭐⭐8GBAdvanced analysis

Dynamic Model Selection

def select_optimal_model(query_type: str, resource_constraints: dict):
    """Select model based on query type and resources"""
    
    if resource_constraints["memory"] < 2000:  # 2GB
        return "sentence-transformers/all-MiniLM-L6-v2"
    
    if query_type == "simple_search":
        return "sentence-transformers/all-mpnet-base-v2"
    elif query_type == "code_search":
        return "microsoft/codebert-base"
    elif query_type == "semantic_analysis":
        return "sentence-transformers/all-roberta-large-v1"
    
    return "sentence-transformers/all-mpnet-base-v2"  # default

Concurrent Request Handling

Async Request Processing

import asyncio
from aiohttp import web
import aiodns
from concurrent.futures import ThreadPoolExecutor

class ConcurrentHandler:
    def __init__(self, max_workers=10):
        self.executor = ThreadPoolExecutor(max_workers=max_workers)
        self.semaphore = asyncio.Semaphore(100)  # Limit concurrent requests
        
    async def handle_request(self, request):
        async with self.semaphore:
            # Process request asynchronously
            result = await self.process_query(request)
            return result
    
    async def process_batch(self, requests):
        """Process multiple requests concurrently"""
        tasks = [self.handle_request(req) for req in requests]
        return await asyncio.gather(*tasks)

Load Balancing Configuration

# nginx.conf for load balancing
upstream deepwikiopen_backend {
    least_conn;
    server backend1:8000 weight=3;
    server backend2:8000 weight=2;
    server backend3:8000 weight=1;
    keepalive 32;
}

server {
    location /api {
        proxy_pass http://deepwikiopen_backend;
        proxy_http_version 1.1;
        proxy_set_header Connection "";
        proxy_buffering off;
        proxy_request_buffering off;
    }
}

Memory Management

Memory Optimization Strategies

import gc
import resource
from memory_profiler import profile

class MemoryManager:
    def __init__(self, max_memory_mb=8192):
        self.max_memory = max_memory_mb * 1024 * 1024
        self.configure_limits()
    
    def configure_limits(self):
        """Set memory limits"""
        resource.setrlimit(
            resource.RLIMIT_AS,
            (self.max_memory, self.max_memory)
        )
    
    @profile
    def process_large_dataset(self, data_iterator):
        """Process data in chunks to manage memory"""
        chunk_size = 1000
        processed = 0
        
        for chunk in self.chunked(data_iterator, chunk_size):
            # Process chunk
            results = self.process_chunk(chunk)
            
            # Yield results to avoid memory accumulation
            yield results
            
            # Explicit garbage collection
            if processed % 10000 == 0:
                gc.collect()
            
            processed += chunk_size
    
    def monitor_memory(self):
        """Monitor current memory usage"""
        import psutil
        process = psutil.Process()
        return {
            "rss": process.memory_info().rss / 1024 / 1024,  # MB
            "vms": process.memory_info().vms / 1024 / 1024,  # MB
            "percent": process.memory_percent()
        }

Memory Pool Configuration

# Configure memory pools for embeddings
MEMORY_POOLS = {
    "embeddings": {
        "size": "4GB",
        "prealloc": True,
        "cleanup_interval": 300  # 5 minutes
    },
    "cache": {
        "size": "2GB",
        "prealloc": False,
        "cleanup_interval": 600  # 10 minutes
    },
    "temporary": {
        "size": "1GB",
        "prealloc": False,
        "cleanup_interval": 60  # 1 minute
    }
}

Docker Resource Limits

Docker Compose Configuration

version: '3.8'

services:
  deepwikiopen:
    image: deepwikiopen:latest
    deploy:
      resources:
        limits:
          cpus: '4.0'
          memory: 8G
        reservations:
          cpus: '2.0'
          memory: 4G
    environment:
      - PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:512
      - OMP_NUM_THREADS=4
    ulimits:
      memlock:
        soft: -1
        hard: -1
      nofile:
        soft: 65536
        hard: 65536

Container Optimization

# Optimized Dockerfile
FROM python:3.11-slim

# Install only required dependencies
RUN apt-get update && apt-get install -y \
    --no-install-recommends \
    build-essential \
    && rm -rf /var/lib/apt/lists/*

# Use multi-stage builds
FROM python:3.11-slim as runtime
COPY --from=builder /app /app

# Set resource limits
ENV PYTHONUNBUFFERED=1
ENV MALLOC_ARENA_MAX=2
ENV MALLOC_MMAP_THRESHOLD_=131072
ENV MALLOC_TRIM_THRESHOLD_=131072

Monitoring Performance Metrics

Prometheus Configuration

# prometheus.yml
global:
  scrape_interval: 15s
  evaluation_interval: 15s

scrape_configs:
  - job_name: 'deepwikiopen'
    static_configs:
      - targets: ['localhost:8000']
    metrics_path: '/metrics'

Custom Metrics

from prometheus_client import Counter, Histogram, Gauge
import time

# Define metrics
query_counter = Counter('deepwikiopen_queries_total', 'Total queries processed')
query_duration = Histogram('deepwikiopen_query_duration_seconds', 'Query duration')
active_connections = Gauge('deepwikiopen_active_connections', 'Active connections')

class MetricsCollector:
    @query_duration.time()
    def process_query(self, query):
        """Track query processing time"""
        query_counter.inc()
        start_time = time.time()
        
        try:
            result = self.execute_query(query)
            return result
        finally:
            duration = time.time() - start_time
            self.record_metric('query_duration', duration)

Grafana Dashboard

{
  "dashboard": {
    "title": "DeepWikiOpen Performance",
    "panels": [
      {
        "title": "Query Rate",
        "targets": [{
          "expr": "rate(deepwikiopen_queries_total[5m])"
        }]
      },
      {
        "title": "Response Time",
        "targets": [{
          "expr": "histogram_quantile(0.95, deepwikiopen_query_duration_seconds)"
        }]
      },
      {
        "title": "Memory Usage",
        "targets": [{
          "expr": "process_resident_memory_bytes / 1024 / 1024"
        }]
      }
    ]
  }
}

Optimization Techniques

Code-Level Optimizations

# Use vectorized operations
import numpy as np
from numba import jit

@jit(nopython=True)
def fast_similarity(vector1, vector2):
    """Optimized cosine similarity calculation"""
    dot_product = np.dot(vector1, vector2)
    norm1 = np.linalg.norm(vector1)
    norm2 = np.linalg.norm(vector2)
    return dot_product / (norm1 * norm2)

# Batch processing
def process_embeddings_batch(embeddings, batch_size=1000):
    """Process embeddings in optimized batches"""
    for i in range(0, len(embeddings), batch_size):
        batch = embeddings[i:i + batch_size]
        # Process batch using vectorized operations
        yield np.array(batch)

Network Optimization

# Connection pooling
import aiohttp
from aiohttp import TCPConnector

async def create_session():
    """Create optimized HTTP session"""
    connector = TCPConnector(
        limit=100,
        limit_per_host=30,
        ttl_dns_cache=300,
        enable_cleanup_closed=True
    )
    
    timeout = aiohttp.ClientTimeout(total=30, connect=5)
    
    return aiohttp.ClientSession(
        connector=connector,
        timeout=timeout,
        headers={'Connection': 'keep-alive'}
    )

Storage Optimization

# Use efficient storage formats
import pyarrow.parquet as pq
import pyarrow as pa

def save_embeddings_optimized(embeddings, path):
    """Save embeddings in optimized format"""
    # Convert to Arrow table
    table = pa.table({
        'id': embeddings['id'],
        'vector': embeddings['vector'],
        'metadata': embeddings['metadata']
    })
    
    # Write with compression
    pq.write_table(
        table, 
        path,
        compression='snappy',
        use_dictionary=True,
        row_group_size=50000
    )

Scaling Strategies

Horizontal Scaling

# kubernetes-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: deepwikiopen
spec:
  replicas: 3
  selector:
    matchLabels:
      app: deepwikiopen
  template:
    spec:
      containers:
      - name: deepwikiopen
        image: deepwikiopen:latest
        resources:
          requests:
            memory: "4Gi"
            cpu: "2"
          limits:
            memory: "8Gi"
            cpu: "4"
---
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: deepwikiopen-hpa
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: deepwikiopen
  minReplicas: 3
  maxReplicas: 10
  metrics:
  - type: Resource
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 70
  - type: Resource
    resource:
      name: memory
      target:
        type: Utilization
        averageUtilization: 80

Vertical Scaling

# Dynamic resource allocation
class ResourceScaler:
    def __init__(self):
        self.current_resources = self.get_current_resources()
        
    def scale_up(self, factor=1.5):
        """Increase resources dynamically"""
        new_workers = int(self.current_resources['workers'] * factor)
        new_memory = int(self.current_resources['memory'] * factor)
        
        # Update worker pool
        self.update_worker_pool(new_workers)
        
        # Adjust memory limits
        self.adjust_memory_limits(new_memory)
        
    def auto_scale(self, metrics):
        """Auto-scale based on metrics"""
        if metrics['cpu_usage'] > 80:
            self.scale_up(1.5)
        elif metrics['cpu_usage'] < 20:
            self.scale_down(0.7)

Distributed Processing

# Distributed embedding generation
from ray import ray
import ray.serve

@ray.remote
class EmbeddingWorker:
    def __init__(self, model_name):
        self.model = self.load_model(model_name)
    
    def generate_embedding(self, text):
        return self.model.encode(text)

# Initialize Ray cluster
ray.init(address='ray://head-node:10001')

# Create worker pool
workers = [EmbeddingWorker.remote("model-name") for _ in range(10)]

# Distribute work
futures = []
for batch in data_batches:
    worker = workers[len(futures) % len(workers)]
    futures.append(worker.generate_embedding.remote(batch))

# Collect results
results = ray.get(futures)

Performance Tuning Checklist

Pre-Deployment

  • Profile application for bottlenecks
  • Optimize database queries and indexes
  • Configure connection pooling
  • Set up caching layers
  • Choose appropriate models
  • Configure resource limits
  • Set up monitoring

Runtime Optimization

  • Monitor query patterns
  • Adjust cache TTLs
  • Tune garbage collection
  • Optimize batch sizes
  • Balance load across instances
  • Update model selection
  • Clean up unused resources

Continuous Improvement

  • Analyze performance metrics
  • Identify slow queries
  • Review resource utilization
  • Update optimization strategies
  • Test scaling policies
  • Benchmark improvements
  • Document best practices

Performance Best Practices

  1. Start Small, Scale Gradually: Begin with minimal resources and scale based on actual usage
  2. Monitor Everything: Use comprehensive monitoring to identify bottlenecks
  3. Cache Aggressively: Implement multi-level caching for frequently accessed data
  4. Optimize Hot Paths: Focus optimization efforts on the most frequently used code paths
  5. Use Async Operations: Leverage async/await for I/O-bound operations
  6. Batch Processing: Process data in batches to reduce overhead
  7. Profile Regularly: Regular profiling helps identify new bottlenecks
  8. Document Changes: Keep track of performance improvements and their impact

Troubleshooting Performance Issues

Common Issues and Solutions

IssueSymptomsSolution
Slow QueriesResponse time >1sAdd indexes, optimize query patterns
High Memory UsageOOM errorsImplement streaming, reduce batch sizes
CPU Bottlenecks100% CPU usageScale horizontally, optimize algorithms
Cache MissesRepeated computationsIncrease cache size, adjust TTL
Network LatencySlow API responsesUse connection pooling, CDN
Disk I/OSlow file operationsUse SSD, implement caching

Performance Debugging Commands

# Monitor system resources
htop
iotop
nethogs

# Database performance
pg_stat_activity
EXPLAIN ANALYZE <query>

# Application profiling
py-spy top --pid <pid>
memory_profiler run script.py

# Network analysis
tcpdump -i any -w trace.pcap
wireshark trace.pcap

Conclusion

Optimizing deepwikiopen performance requires a holistic approach covering infrastructure, application code, and operational practices. Regular monitoring, profiling, and iterative improvements are key to maintaining optimal performance as your codebase and user base grow.